Classical complexity and quantum entanglement

نویسنده

  • Leonid Gurvits
چکیده

Generalizing a decision problem for bipartite perfect matching, Edmonds (J. Res. Natl. Bur. Standards 718(4) (1967) 242) introduced the problem (now known as the Edmonds Problem) of deciding if a given linear subspace ofM(N) contains a non-singular matrix, whereM(N) stands for the linear space of complexN ×N matrices. This problem led to many fundamental developments in matroid theory, etc. Classical matching theory can be defined in terms of matrices with non-negative entries. The notion of Positive operator, central in QuantumTheory, is a natural generalization ofmatrices with non-negative entries. (Here operator refers tomaps frommatrices tomatrices.) First, we reformulate theEdmonds Problem in terms of completely positive operators, or equivalently, in terms of bipartite density matrices. It turns out that one of the most important cases when Edmonds’ problem can be solved in polynomial deterministic time, i.e. an intersection of two geometric matroids, corresponds to unentangled (aka separable) bipartite density matrices. We introduce a very general class (or promise) of linear subspaces ofM(N) on which there exists a polynomial deterministic time algorithm to solve Edmonds’ problem. The algorithm is a thoroughgoing generalization of algorithms in Linial, Samorodnitsky and Wigderson, Proceedings of the 30th ACM Symposium on Theory of Computing, ACM, NewYork, 1998; Gurvits andYianilos, and its analysis benefits from an operator analog of permanents, so-called Quantum Permanents. Finally, we prove that the weak membership problem for the convex set of separable normalized bipartite density matrices is NP-HARD. © 2004 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing quantum discord is NP-complete

We study the computational complexity of quantum discord (a measure of quantum correlation beyond entanglement), and prove that computing quantum discord is NP-complete. Therefore, quantum discord is computationally intractable: the running time of any algorithm for computing quantum discord is believed to grow exponentially with the dimension of the Hilbert space so that computing quantum disc...

متن کامل

Teleportation via an Entangled Coherent Channel and Decoherence Effect on This Channel

We study an entangled two-mode coherent state within the framework of2×2-dimensional Hilbert space. We investigate the problem of quantum teleportation ofa superposition coherent state via an entangled coherent channel. By three differentmeasures with the titles ``minimum assured fidelity (MASF)”, ``average teleportationfidelity” and ``optimal fidelity (f)” we study the ...

متن کامل

Two Bit Quantum Protocol for a Three Party Modular Function

Communicational complexity problem among three parties for the calculation of a three party inner product modular function is discussed, where each party possess some of the function’s input. Classical communicational complexity of this function can be evaluated by three classical bits. In classical theory, the three party modular function can’t be evaluated by two classical bits, but using qua...

متن کامل

Voltage-Controlled Entanglement between Quantum- Dot Molecule and its Spontaneous Emission Fields via Quantum Entropy

The time evolution of the quantum entropy in a coherently driven threelevel quantum dot (QD) molecule is investigated. The entanglement of quantum dot molecule and its spontaneous emission field is coherently controlled by the gat voltage and the intensity of applied field. It is shown that the degree of entanglement between a three-level quantum dot molecule and its spontaneous emission fields...

متن کامل

Quantum Communication Complexity

Can quantum communication be more efficient than its classical counterpart? Holevo’s theorem rules out the possibility of communicating more than n bits of classical information by the transmission of n quantum bits—unless the two parties are entangled, in which case twice as many classical bits can be communicated but no more. In apparent contradiction, there are distributed computational task...

متن کامل

Coherent Control of Quantum Entropy via Quantum Interference in a Four-Level Atomic System

The time evaluation of quantum entropy in a four-level double- type atomic system is theoretically investigated. Quantum entanglement of the atom and its spontaneous emission fields is then discussed via quantum entropy. It is found that the degree of entanglement can be increased by the quantum interference induced by spontaneous emission. The phase dependence of the atom-field entanglement is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Syst. Sci.

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2004